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ON THE ZEROS OF EXPONENTIAL POLYNOMIALS

Cerino E. Avellar and Jack K. Hale

ABSTRACT: Suppose r = (rl,...,rM), r~ > 0, 
~kj 

> 0 integers ,

k = l,2,...,N, j = l,2,...,M, Yk~
r = 

~~
Yk~

r5. The purpose of this

paper is to study the behavior of the zeros of the function

N -Ày r
h(A ,r,a) = 1 + ~~~~~~~ 

k

where each a~ is a real number. More specifically if

~(r,a) = closure{Re A: h(A ,r ,a ] ,  we study the dependence of Y(r,a)

on r,a. This set is continuous in a but generally not in r.

However , it is continuous in r if the components of r are

rationally independent. Specific criterion to determine when

o t Y(r,a) are given . Several examples illustrate the complicated

nature of Z(r,a).

The results have immediate implication to the theory of

stability for difference equations

M
~(t) - I Akx(t~rk) = 0

k= 1

where x is an n-vector , since the characteristic equation has the

form given by h(A ,r,a). The results give information about the

preservation of stability with respect to variations in the delays.

I
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The results also are fundamental for a discussion of the

dependence of solutions of neutral differential difference equations

on the delays . These implications will appear elsewhere .
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ON THE ZEROS OF EXPONENTIAL POLYNOMIALS

by

CERINO E. AVELLAR AND JACK K. HALE

+ +
1. Introduction. Let IR = 

~~~~~~~~~~~~~~~ 
1R~ = (O,~ ), IR =

N + M
a = (al,...,aN) d R  , r = (rl,...,rM) C OR ) , y

~ 
=

~~k 
nonnegative integers, j  = l,2,...,N, k =

M.
Y
3

r = 1k=l
’
~3k
’
~k• 

Our purpose in this paper is to study the behavior

of the real parts of the zeros of the function

- Ay. ~ r ~
.. et ~~~~ 0

(1.1) h(A ,r,a) = 1 + ~~~~ 1a~~e ~ .

.- -.- 

More specifically , if

(1.2) Z(r,a) = (Re A :  h(A ,r,a) = 0)

and i(r,a) = ci Z(r,a), the closure of Z(r,a), we study the

dependence in the Hausdorff metric of Y(r,a) on r ,a. It is shown that

Y(r,a) is continuous in a with a certain type of uniformity in r.

It has been known for some time (see Melvin [6] or Henry [4]) that

i(r ,a) is not continuous in r. However, we show that it is

continuous in r if the components of r are rationally independent.

We also give a characterization of Y(r,a) in a way which is

amenable to computation. For the case in which N = M and the

function h(X ,r,a) is given as

L.~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-Ar.
(1.3) h(A ,r ,a) = 1 + ~~~~ 1

a~~e ~~~~~

the characterization of 2(r,a) is more complete and the computation

of 2(r,a) can be given rather explicitly.

Finally, we give several characterizations of the property that

~(r ,a) ri [-6 ,6] = 1 , 6 > 0; that is, the polynomial h(X ,r,a) is

hyperbolic . The case !(r,a) C (-c ~~,- 6 ) , 6 > 0 is also discussed

in detail. This corresponds to uniform asymptotic stability .

The implications of the results for difference equations are

immediate. In fact , consider the equation

(1.4) x(t) - I~~l
Akx(t-rk) 

= 0

where x CI R n and each Ak is an n X n matrix . For any

• C C = C ( [- h , 0 ] , 1R~ ) ,  h > max{rk}, there is a unique solution

x = x (~~) of (1.4) for t > -h which satisfies x(~)(t) =

t C [-h ,O]. If we let x(~)(t+@) = (S(t)~)(O), -h < 0 < 0, then

S(t): C -‘ C, t > 0, is a strongly continuous semigroup of bounded

linear operators. Furthermore , if

ct (r,a) = inf{b: ;k with IS( t ) I < kebt}

then it is known (see Henry [4], Hale [2]) that

c~(r,a) = sup{Re A:  h(A ,r,a) = 0)

h(A ,r,a) = det [I - I~~l
Ak

exp(_Ar
k)]

Therefor e, the above results give information about the behavior of

L _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _
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the order c*(r,a) of the semigroup S(t) as a function of r,a.

The results also have implications for neutral functional

differential equations of the type

(1.5) [x(t) - ..lAkx(t-rk)] 
=

where f: C ÷]R’1 and x
~
(O) = x(t+O), -h < 0 < 0. The solution

operator for Equation (1.5) can be written as a sum of a completely

continuous operator and the operator S(t) above (see Hale [2]).

If f is linear , this gives information about the spectrum of the

solution operator . One can then prove certain theorems on the

continuous dependence in the delays . Results of this type will appear

in Avellar and Hale El] .

2. Continuous dependence. In this section , we present some results

on the dependence of the set ~(r ,a) on r,a. We need the Hausdorff

metric which is defined as follows :

For any sets E ,F C iR and any point p c ]R, let

(i) d(p ,E) = inf Ip - t i
t CE

(ii) tS(E,F) = sup d(p,F)
p cE

(iii) D(e,F) = max{6(E,F), 6(F,E)).

The number D(E,F) is called the Hausdorff distance

between the sets E,F in IR.

We need the following rcsultfnin Levin [14 , p. 268], the

proof of which is omitted.

~

_

~~

_ _ I 
_ _
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Lemma 2.1. For a given a < 8 , the fo l l ow ing conclusio ns

hold:

(i) There is an integer p such that , for all real t,

there arc no more than p zeros of h in the box

(A: a < Re A < ~~; t < Im A < t + ]}. 
.

(i i)  For any 6 > 0, there is an m(6) > 0 such that;

whenever a < Re A < 8 and A is at a dis tance > 6 f rom

every zero of K, one has Jh (X)f > m (sS).

Our first objective is to obtain an interval which con-

tains i(a,r). Observe that A = ~ + iv sa ti s f ies
h (A ,a,r )  = 0 if and only i f

0 = 

k~o
k 

= 
~~

IakI e e

wher e k 
= 0 if ak > 0, •k = it if ak < 0.

For further reference , let us st ite this result as

Lemma 2.2. If the equation h(p+iV ,a ,r) = 0 is sa ti s f ied  for
-

some real p ,v, then the lengths (la kie , k = O ,1,...,N}

can fbrm a closed polygon ; that is , no one of these terms is

greater than the sum of the others:

I

—- — ..
~ — -V . .  — — - 4 j~~~ k
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-~iy. •r
(2.1) Ia~Ie 

~ k,J
1 k I , j = O ,1,...,N.

Following Henry [4], define = P
3
(a,r), j  0,1,

2,...,N , if they exis t , by the rela tions

-P.1. •r -p .y. •r
(2.2) Ia~ Ie = 

kfj kt , j  = 0,l,...,N.

It is easy to verify that each 
~N’~ O always exist , are

unique and

(2.3) = p
0 if N ~ ~N 

< p
0 if N > 2.

Lemma 2.3. If 0 < y
1
.r < ... < y

1
.r, then

Z(a,r) C (PN(a, r), 
p0(a, r)J .

Proof: Let W
k

= y .r. From Relations (2.2) we have

N-i P ( w -w ) N - P w
la Mi = la k ie ; Ia~ I = I Ia~le

k = 0 k= 1

we also have - Wk > 0 , k =  0,i,...,N - 1 ;  wk > 0,

k = i ,...,N. So,

N- i -iw
(i) ~ < 

~N 
- laN le N > 

k=0 ’
~~~ 

k

N -pw
(ii) ~ > P0 ~ 1a 0 1 > I la kic k

$ k=1 

—-- - -- • ---~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Lemma 2.2 implies hQi+iV ,a,r )  # 0 in either case , which

proves the result.

The comple te structure of Z(a,r) is known for the case

when the components r are commensurable. This will be

s tated as

Lemma 2 . 4 .  If r1,r2,.. .,
rM are commensur able , that is ,

rk 
= 

~k
8 for some 8 > 0 and in tegers  

~k’ 
k = 1,...,M , then

h(X ,a,r )  is a polynom ial of degr ee NnN in e 8A ,

NnN
h(A ,a,r) = aN H (e~~

8- r
~
)

v=1

and

Z (a ,r) = Z(a ,r) (.- 

~ lnfr.~,I , 
‘.1 = l,2,...,NnN}.

Proof: Obvious. -

Theorem 2.1. Z(a,r)  is continuous in a in the Hausdorff

metric. Also , if S C QR)1
~ is a given set and there exist

a < B such that Z(a ,r) C (a , 8)  for w C S, then there exis t

a 6 > 0 such tha t Z(b ,r) C (a,8) for lb - a l < 6.

Proof: From the relation

N -y.r

~h(A ,b ,r) - h(A ,a,r)J ~ I Ib k-akle k
k=0

for any c > 0 , there is a 6 > 0 such that

____________
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~h(A ,b,r) - h(.A ,a,r)l < C for Re A C [PN(a,r) - C, P~(a,r) + C],

lb-al < 6

that is, h( X ,b,r )  - h(A ,a,r )  -
~~ 0 as b + a un i fo rmly for

Re A C (P N (a , r)  - C , P0(a,
r) + C].

If P C Z(b,r) then h(X+iV ,b ,r) = 0 for some V = v(b).

If , in add ition , b -
~~ a, then every limit point P

0 
of the se t

Z(b ,r ) as b ~~~ a sa t i s f ie s P
0 

C Z~(a ,w) from Lemma .1.

This shows that 6 ( Z ( b ,r),Z(a,r ) )  -
~~ 0 as b ÷ a. Conversely,

if P C Z(a ,r ) ,  then there is a ~ 
= 1 (a) such that

h(P+i~ ( a ) , a,r) = 0. Therefore , h(p+ii (a),b ,r) -
~~ 0 as b a

and Lemma 2.1 implies P C Z(b,r). Thus 6(I(a,r ) , I(b,r)) ÷ 0

as b -
~~ a and the continuity of Z(a,r) is proved .

The last statement of the theorem is also a consequence

of an argument similar to the above.

Our next objective is to discuss the dependence of Z(a,r )

on r. The following example given by Silkowski [‘7), shows

this problem is much more difficult.

Example 2 .1. Let

1h(X ,r )  = h(A ,r1,r2) 
= 1 + e 1 + e ~.

For r = (1 ,2), that is ,

h(X ,l ,2) = 1 + ~~- e~~ + .~. e ZA
,

- .——- .——_---—
~~~ ~~~~~~~~~~~~~~~~~~ 

S

~~ 7~~~~~~ 
TT~
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it is easy to see that the zeros of h(X ,l,2) satisfy

Re A = -(in 2)/2 < 0. Therefore , Z(r) = (-(In 2) 1 2 )  if

r =  (1,2). 

— —Now let us consider r = (r1,r2) close to (1 ,2). In

par ticular, take j: = (1-l/(4n+3), 2) where n is any non-

negative integer.

It is easy to verify that

h(i(4n+3)Tt/2 , 1 - 1/(4n+3),2) = 0.

Therefore, Z(~) D (01 if r = (l-l/(4n+3), 2) and so, Z(r)

is not continuous in r.

The numbers P0,P2 for this example are P
0 

= 0,

P2 -in 2 for r = (1,2). Also , p0(r) 
= U for all r .

Therefore, Z(t-) C [P2(r),Oj where P2(r) ÷ -in 2 as

r .÷ (1,2).

What is happening to the zeros of h, in Exampl e 2.1, as

r varies? By Rouch~ ’s theorem , for any given r0 and any

compact set K in C for which no zeros of h(A ,r 0) lie on

~K, there is an C > 0 such that (r- r01 < £ implies

h(A ,r) has the same number of zeros as h(A,r0) in K.

Howe~.rer , a small change in r does not n e c e s s a r i l y  give a

small change in h uniformly in a strip as was the case

when the coefficients were varied as in Theorem 2.1. The non-

compactness of the stri p plays an essential role when r is

varied . .

For the purpose of intuition , it is worthwhile to note the

- .~~~~~~~~~

- ..‘ - .
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following fact about Example 2.1. For r = (1,2), the zeros

of h belong ed to a vertical line Re A = -(ln 2)/2 and were

given by A = -(in 2)/2 + i(tan 1 /Y + 2k7T), k = 0, 1, 2,...

For a smal l change in r , this vertical l ine of zeros is moved

a large distance. In fact , it may include Re A = 0. The

figure below is instructive

i m A  I .
- & Iin X -

A .4

1~~~ 

lilT:::;:: 
- .

in 2 -in 2 ~ 
t----~~ -~~~~~~~~~~~ 

R e X  ReX
- : II I

I t I

I 
I
I S
I 

•
‘S S S

i — - ‘

I I
w = (1,2) w = (1s- c,2)

We shall see below that it is actually possible for the

real parts of the zeros of h to fill an interval.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~ .~~JiiI±± ii~i1± :~
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The above example shows that ~(r,a) is not necessarily

continuous in r. However , it is if the components of r are rationally

independent . This is the content of the next theorem where we write

Z(r) = Z(r,a) since a is fixed.

Theorem 2.2. If r0 
C 0 R ) M is fixed and the components of r0

are rationally independent , then !(r) !(.r0) in the

Hausdorff metric as r ÷ r0.

Proof: Suppose P(r) C 2 ( r ) ,  h(P(r) + ic(r),r) = 0 for some

real a(r). If r -
~ r0 we may assume pI_r) -

~~

Consider h(P0
+iV ,r0).

N -p y .r ~jVy r
h(P0

+iV ,r0) 
= 

~ 
a~e 

o 

~ 
0
e 

k 0 
=

k=0

= 

k=O k 
~
ic1(r)Yk

.r 

~~~~~~~~~~~~ =

— 

N ~
(P Q+ ia ( r) )Y k

.r POYk
.(r-rO) iYk

. (o(r)r
~
vrO)

~~~I a ke e e
k=0

By Kr on eck er ’s Theorem , for  any  sequence r~ + r0, choose

(V . }, V . -‘. as I -
~ ~~~~, such that

3 , 1  3 , 1

iy~ .(o(r.)r.-v . r0)c 3 3 j,e -~~i as ~~~~~~~~~~~~~~~~

$ 
By the diagonalization procedure , we can choose a subsequenc e

‘

J

}

~~~ 

V . ÷ as j  
÷ ~~~~, such that

-a- ~~~~ ——— —
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e -~ -~ ~ ~~l as j - ’~~~~~~~.

Thus , h (P0+i~~~ r~) 0 as I and every limit point

p
0 of Z(r) satisfies P

0 
C Z(r 0 ) .  This  shows that

+ 0 as r ~ r 0 .

Convers ely , SU~~POSC p C Z ( r 0 ) .  Then there exist a ~

such tha t  h ( P + i a , r 0 ) = 0. We a l so  ha v e

N 

~
(P+ io) y

k
.r Q -(~~ia)y (r-r )

h(P+ia ,r) = 
~ 

aJ~e c k 0 
-
~ o as r -, r

k=0 0

Therefore , 6 ( l ( r 0 ) , i ( r ) )  0 as r -
~~ r0. This proves the

theorem .

As an immediate consequence of Theorem 2.2, we have the

following result.

Corollary 2.1. 2(r) is lower semicontinuous in r; that is,

lim inf 0 !(r) 
= ~(r

0).
r-~ r

3. ..Characterization of 7(r,a). The following characterization

of ~(r) = Y(r,a) was stated without proof by Henry [4] .

Theorem 3.1. If

L . II T: ~~~~~T~
TTT

~~~~~~~~~ —~~~~~~--.-- _~~~~~ - -
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Lemma 3.5 (H e n r y  [121). If

N -X y .r
h(A ,r) a0 

+ I a k e , r = (r1,r2,. . .,r~1)k= 1

N - Py •r j y .0
(3.1) H(P ,O , r) = a0 

+ 

k=l k 
k k

0 = (01,02,... ,0~i), o O~ < 21T

and the components of r are rationally independent , then

P C Z(r) if and only if there is a 0 such that

IL(P,O ,r) = 0.

Proof: If h (p+iv ,r) = 0, then ~ 0 yr such that

~1(p,O ,r) = 0.

Conversel y ,  if t he re  e x i s t 0 = 

~
0
~~~~ 

.,0.~~) ,  0. C [0 ,211)

j = 1, . . ., M , such that

N -PyV r iy
1~~

0
a0~~ l a ke 

‘ e = 0 .
k= 1

B y Kroneckci- ’s Theorem , there exists a sequence

such that

lY k ( O - V r)
e ÷ 1  as n ÷~~ .

Therefore ,$

L -- — -  -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - — - -~~~~~~ --- ------- -~----~~~~
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N -P 1 • r - j V ~ y . r
h(P+i’J~ ,r) = a0 

+ 1 a~ c k c =

k= 1

N - Py - r  - iy  0 iy k (O
~~

V r )
= a 0 ~ ~ a ]~e k e k e + o

k~~1

as n -, ~~~. But th i s  imp l i e s  that P C

Theorem 2 . 2 s ta tes  tha t  ~ (r) is cont inuous at those

vectors r with rationally independent components and

Theorem 3.1 gives a way for computing Z(r) at such vectors r.

An iiøportant consequence of Theorem 3.1 is the following

result.

Corollary 3.1. The following statements are equivalent

(i) 0 £ ~(r°) for some r° with rationally independent

components.

(ii) 0 C !(r) for all r with rationally independent

components.

Proof: Since H(O,0,r) in Relation (3.1) is independent of r,

it is clear from Theorem 3.1 that (i) => (ii). The other way is

obvious .

Another easy consequence of Theorem 3.1 is

Corollary 3 .2 .  For any r £ ~I R ) M , !~(r) is the union of a

-~~ finite number of intervals.

L 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof: If the components of r are rationally independent ,

then !(r) is characterized by the solutions of H(p ,0,r) = 0.

Since these solutions are analytic varieties , it is impossible

to have the following property : there exists a P C ~ (r)

C 7(r), p~ + p as j -‘. 
~~~~, ~~~~~~~~ fl !~(r) = •. This

proves the corollary when the components are rationally independent .

For any r C 0 R ) M there exists a 8 C ~1g~)~ for some integer

q such that the components of q are rationally independent.

Apply the previous result to 8 to complete the proof.

Another easy consequence of Theorem 3.1 and Theorem 2.2 is

Corollary 3.2. If

p( r )  = min{p:  3 0  C I R M wi th  H ( p , 0 , r) = 0}

~(r) = max{p 30 C I R M with  H ( p , 0 , r) = 0)

(3 .2 )  r (r ) = max (p(r) < p < 0: 30 CI R M with H(p,0 ,r) = 0)

if p(r) < 0

t~ (r) = min{ci(r) > p > 0: 30 CIR
M wi th  H ( p , 0 , r) = 0)

if o( r )  > 0.

Then p(r), a(r), t (r), t+(r) are continuous in r , are either

~~ Q for all r or = 0 for all r , and

~(r) C [p(r) , t (r)J U [t~~(r) , ci(rfl .

Furthermore, p(r), t (r), t+(r), 0(r) C ~(r). if the components

of r are rationally independent . Of course , it is understood that

the interval (p(r),’r (r)] (respectively, (t~ (r),a(r)]) is not

L ~~~~~~~~ 

- - 

~~~~~

- - - -- - 
--- - 

_ _ _  ~~~~
- - - - -~~~~~- - ---

.
~~~~~
- -

~~~~~~~~~~~~~~~~
- -- --- - - -
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considered if oCr) < 0 (respectively, p(.r) > 0) .

We remark that one could give a finer structure theorem for

7(r) than Corollary 3.2 by specifying a finite of number of

intervals which vary continuously with r and which coincide with

~(r) when the components of r are rationally independent.

However, the number of disjoint intervals would not be constant

(examples will be given later) in r. On the other hand , the

structure theorem in Corollary 3.2 is independent of r. In fact,

for any r° with rationally independent components , there is a

neighborho od U(r 0) of r° such that only one of the following

situations occur :

(1) t (r) = t~~(r) = 0 for all r ;  that is , !~(r) contains

zero for all r c U(r0).

(ii) T (r) < 0 < T~~(r)  for all r C U( r °); that is, 2(r)

contains elements < 0 and > 0 for all values of

r C U(r 0) .

(iii) t (r) = 0(r)  (t~~(r) does not exist); that is either

Y(r) (‘~ [0 ,co) = c~ for all r C U(r 0) or !~(r) r~ (0 ,~~) = (0 )

for all r C U(r°).

( iv)  t (r) = P ( r )  (t (r) does not exist) ; either

~(r) fl (-~~,O] ~ or ~ (r) ñ (-~~,0] = (0) for all

r C U(r°).

These remarks will be related to stability in a later section.

4. A special case. When the function h(A ,r;a) has the special

form 

~~~ 
r 

. T~~T.-1~~~~

’

~
-!

~~~~~
- ’

- - ~~- - ~~-_ - ~~~~~~ --- - .--~~~~~
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(4.1) h(X ,r,a) = 1 + =1a~e
i

one can give a more precise description of the set 7(r) = !~(r,a).

This corresponds to the case where N = M and 1jk 
= 0 if i ‘ k~

= 1, j = 1,2,... ,M. It is the purpose of this section to

discuss the zeros of the function h in Relation (4.1).

Theorem 4.1. Suppose 0 < r1 
< ... < rN and def ine

If the set {rk, k = 1,2 ,.. .,N} is rationally

independent, then p E Z(a,w) if and only if ( Ia 0 l,
I a~~J e  k, ,  k = l ,2,...,N} can form a closed polygon. Also ,

(PN(a,r),PO (a,r)] is the smallest closed interva l containing

Z(a, r) and Z(a, r) is a finite union of closed intervals.

In fact, if I. C [PN(a,r),pO (a,r)], j 1,2,...,N - 1 is
-Pr . -Pr

the set (it may be empty) such that la .le ~ 
> ~~~~~~ 

k

ky~j
— N - i

for P c I., then Z(a,r) = 

~~~N’~~~O
1 ~ U I . .

j=1 ~

Proof: If N.= 1, the theorem is trivial. Thus, assume N > 2

and define a = 1, r0 
= 0,

-Pr . -Pr
= la d le 3 - 

k~j
i
~~~ 

k, 
~ 

= 0,1,2,...,N.

-Pr
The set (1a 01 , Ja k ie k, k l,2,...,N} can form a closed

polygon if and only if f~(~) < 0 for all j = O,1,2,...,N. The

function H in Theorem 3.1 for (4.1) is

-~~~~~~~~~ —* —--- - 

-—~~~~ -.— - 
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N -Pr . iO .
H(p ,Q ,r) = a0 

+ a .e  3e ~
j=l ~

It is clear that “f~ (P ) < 0 for all j and some P” is equivalent

to “there exist a 0 £. IRN such that H(P,O ,r) = 0” . Thus,

the first part of the lemma is proved . The second part is

Corollary 3.2. The last part is simply writing down explicitly what

it means to have f~(P) > 0 for some j. This proves the theorem .

Corollary 4.1.. Suppose 0 < r1 
< ... < rN and define

by Relation (2.2). If

“c~(r) maX{P~ (r) < 0 , j = O ,l,2,...,N}

= min (P~ (r) > 0, j = 0,l,2,...,N}

(one of these numbers may not exist), then 
~a(r)’ 

p 8(r)  are con-

tinuous in r and are either ~ 0 for all r or = 0 for all r.

Furthermore ,

~ (r) C (P N (r)
~~

Pa(r)) U (P 8(r)~~P O (r ) i

and the end points of these intervals belong to 2(r) if the

components of r are rationally independent. Of course, it is

understood the interval is not considered if an endpoint does not

exist.

!roof: This is a consequence of Corollary 3.2.

-t 

-~~-—-—-----



5. Stability and hyperbolicity . In this section h(A ,a,r) is

the function defined in Relation (1.1); that is

-Ày  •r
( 5.1) h( A ,r,a) = 1 + 

~J ....lake 
k 

•

We need the following definitions .

Definition 5.1. The function h(A ,r,a) is said to be hyperbolic

at r° if 0 ~ Z(r
0,a). The function

h(A , r , a) is hyperbolic locally at r 0 if there is a neighborhood

U of r0 and 6 > 0 such that Y(r,a) fl [-6 ,-cS] 4’ for all

r C U.  The funct ion h( X ,r , a) is hyperbolic g lobal ly  in r if

0 ~ 2 ( r , a) for each r C OR
+
)M.

Definition 5.2. The function h(A ,r,a) is said to be uniformly

asymptotically stable at r° if h(A ,r0,a) is hyperbolic and

Y(r0,a) n (0,~~) = 4’. It is uniformly asymptotically stable locally

at r°, if it is hyperbolic locally at r° and ~(r,a) fl [0,~) = 4’

for r C U. It is uniformly asymptotically stable globally in r

if it is hyperbolic globally in r and Y(r,a) fl (0,~) = 4’

for all r.

We now prove the following fundamental result. In the statement

of the theorem , P(r),a(r),t (r),t~ (r) are defined in Relation (3.2).

_________ _______ • - • 
~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~

—,— - -
~ 

- •—-—.-  

- • -- — ————---.---——-—-—-———-—------—- •- - ----- •—---—-. - •— - -  —, ----—.— . -~~ - —.----—----~~~~~~~~~~~~
--.—- ---- ---—--. --——- — - --———----- ‘--‘- - —— — — 



— 
- • —~ —- —~~~~~~~~~~ ---- - - ,

r .
19

Theorem 5.1. The following statements are equivalent.

(i) There is an r C OR)M r = (rl,...,rM), with the set

rationally independent , such that the function h(A ,r,a)

is hyperbolic at r°.

(ii) h(A ,r,a) is hyperbolic locally at some r°.

(iii) h( A ,r,a) is hyperbolic globally in r.

(iv) There is an r0 C ~fl~+)M and a neighborhood U of r°

such that h(A ,r ,a) is hyperbolic for every r C U with

the components of r commensurable.

(v) t (r0) < 0, t~ (r 0) > 0 for some r0 C OR )
M if these

numbers exist.

(vi) If

(5.2) h(A ,r,a) = det[I -

then

(5.3) (i.~(O): detEli l 
- 

~~~~~~ 
3~ = 0, 0 CIRM}fl{IlJ I = 1) 4’.

Proof: Let us first prove (v) < >  (vi). If h(A ,r,a) is given by

Relation (5.2), then the function H(X ,0,r) in Relation (3.1) is

given by

-Pr . iO .
H(p,0,r) = det [I - E~~1A~e 

3e ~~] .

The equivalence of statements Cv) and (vi) is now immediate.

From the definitions of t (r),r~ (r) and the remarks following

- - - a—- ~~~~~~~~~~~ 
- • . - -------- — 

~~~~‘-
---- -~~
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Corollary 3.2, we have (v) <=> (i), (v) <=> (i i i )  <=> (iv) .

Obviously (iii) <= ‘ (iv). To complete the proof of the theorem ,

we show (iv) <= > (v) . If (iv) is satisfied and (v) is not, then

T (r) = t÷ (r) = 0 for all r from the remarks after Corollary 3.2.

Since ~~(r),t4(r) C 2(r) if the components of r are rationally

independent and !~(r) is continuous in r at these points , this

is an obvious contradiction. This proves the theorem .

Since stability is so important in the applications , we re-

state Theorem 4.1 for this case.

Theorem 5.2. The following statements are equivalent

(i) There is an r C (]R
4
)M, r = (rl,...,rM) with the set

rationally independent , such that the function h(A ,a,r)

is uniformly asymptotically stable.

(ii) h(X ,a ,r 0) is uniformly asymptotically stable locally at

some r0 c dfl~
+
)M

(iii) h(A,a,r) is uniformly asymptotically stable globally

in r.

(iv) There is an r0 c QR ) and a neighborhood U of r0
such that h(A ,a,-r) is uniformly asymptotically stable for every

e U with the components of r commensurable.

(v) oCr) < 0 for some r c (R~ ) M .

(vi) If

-Ar.
h( A ,r ,a) = det [I - .1A~e 

3] —

t -

then

4
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jO.
sup(Ii.t(0)f: det[ii (0)I - I~~1A~e 

3
] ,  0 CIRM) < 1.

Historically, Theorem 5.2 developed in the following way.

Melvin [6] proved the result for the scalar equation where

Condition (vi) becomes the simple condition

I~~1IA~ < 1, A~ C IR.

Hale [3] proved (ii) <=> (ii i) in the general case. Silkowski [7]

introduced the equivalent conditions (i)  aid (vi) .

6. Examples. In this section we collect some examples to

illustrate the above results. Throughout the section , the numb ers

P~ (r) are defined in Relations (2.2), the numbers P(r), 0(r),

tj r ) , r~~(r) in I~ lations (3.2).

Example 6.1. Let us reconsider Example 2.1; that is , the function

-Ar -Ar
h(A ,r)= l + T e ~~~~ .

We have seen that P0(r) 
= 0 for al l r and , for

r0 = (1,2), Z(r0) = (-(in 2)/2). Now , Theorem 4.1 implies

that , for any r = (r1,r2) with r1,r2 rationally

independen t, [p 2(r),
p
0(r)J 

= [p 2 (r) , 0J is the smal les t

closed interval containing 1(r) and p (r) is continuous2

in r, p2(r0) = -ln 2. Furthermore , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _ _  _ _
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-P.r -P r
- e ) + l > 0 , for  P < 0 , r 1 < r 2

Therefore 11 of Theorem 4 .1 is the empty set and Z(xv) =

[p 2(r),0J . Thus , for any neighborhood U of r0, there is

an r C U such tha t Z(r) is a complete interval of length

approxim ately in 2 whereas for r = r0, Z(r0) is a single

point.

Example 6.2. As for Example 6.1, one shows that

= 1P 2, P0] - [- .27,.37] for the function

h (A ,r0) = 1 + e~~ + ~~~~ r° = (1,11).

Example 6.3. Consider the equation

-A r -Ar 2(6.1) h(A ,r,a) = 1 + a~ e + a 2 e = 0

where 0 < r1 
< r2 and a1,a2 are real constants. The numbers

p
), j 

= 0,1,2, are defined by

-- ~a2~e~~
0T2 = 1 - ~al Ie

0Tl

-p r P1r 1(6.2) Ia 2 Ie 
2 

= (a i le - 1

-p 2r2 P2r2Ia 2 Ie = 1 + k1Ie .

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
- • • - ~ - —
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As remarked earlier , P2 
< p0. The constant P 1 may or may

not exist. From (6.2), it is clear that p
0 

< 0 i f f

Ia 1! + Ia 2 ! 
< 1. Thus , h(X ,r,a) is uniformly asymptotically stable

globally in r if and only if Ia 2! 
> 1 + ~a1f . This means

h(A ,r ,a) is hyperbolic globally in r and has Y(r) fl (-~~,0] = 4’

if and only if Ia 2! > 1 + Ia 1!.

Let us now analyze the other regions in the (a1,a2) parameter

space. If Ia 2 ! < 1 + a1! (that is , p2(r) < 0) and

a1! 
+ Ia 2 ! > 1 (that is, P0(r) > 0) ,  then we know from the

general theory that 1 (r) < 0 (which au tomat ica l ly  implies

t~~(r) > 0) is equivalent to hyperbolic . The number 1 (r) can

be related to the solutions p
1 of Equation (6.2). In fact, fr om

Theorem 4.1, 1 (r) < 0 if and only if there is a solution

P11 (r) of Equation (6.2) satisfying P2(r)  < P11(r) < 0 and

-P 1r2 -p 1r1Ia 2Ie < 

~a1I e - 1 for p
11(r) < p

1 < 0.

If ~a2~ 
< 1a 1 1 - 1, then there is a P11(r) satisfying the above

properties and h(X ,r ,a) is hyperbolic with !(r) fl (-~ ,0) ~ 4’,

Y(r) Ii (0,°’) ~ 4.

If Ia 2! > $a 1 j - I

then

-P1r 
-p~r1Ia 2Ie 2 > Ia 1 Ie - 1 for I~1! < 6
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for some 6 > 0. If , in addition , Ia 1! + Ia 2! > 1, Ia 2! < 1 + Ia1!

then 0 C 2~(r) by Theorem 4.1 if the components of r are

rationally independent . Thus , the function h(X ,r ,a) is not

hyperbolic globally in r.

In summary ,

(i) h(X ,r ,a) is uniformly asymptotically stable globally

in r if and only if 1a 1 1 + Pa 2! < 1.

(ii) h(X ,r,a) is hyperbolic globally in r with

~(r) fl (-oo ,0) ~ 4’ if and only if Pa 2 ! 
> 1 + 1a 11 .

(iii) h(A ,r ,a) is hyperbolic globally in r with

~(r) fl (-00 ,0) ~ 4’, 7~(r) fl (0,
o) ~ 4’ if and only if

Ia 1 ! > 1 + ~~~~

(iv) h(A ,r,a) is not hyperbolic globally in r if the co-

efficients a1,a2 do not satisfy one of the conditions

in (i)-(iii).

The structure of the set ~ (r ,a) obviously changes as the

parameter a varies from the region in case (iii) to the region

in case (ii) above since two intervals had to merge as 2~(r ,a)

moved to positive axis. This structure can also change even when

the parameters always stay in a region corresponding to one case.

In fact, suppose ~a1f + Ia 2! < 1; that is, uniform asymptotic

stability globally in r. Since Ia 1! 
- 1 < 0, there is an a2

sufficiently small so that the equation

- Pr -pr -

Ia 2 Ie 2 
= a1~e ~ - j .

$

has two distinct negative solutions p
11(r) < P~~

(r) in 

-r-
~~~. 

- - , — ——— - 
-—-

—

~

---

~ 

~~~~~~

-- --—- --

~~~ 
- -— •—- - -.~~--

------- --
~~ -- - -- -- -~~~ --~~~~~~ - - 
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(p 2 (r) , p0(r)]. Theorem 4.1 allows one to conclude that Y(r,a)

consists of two intervals.

Let us make one other remark about this example. The number

of intervals in 2~(r ,a) may also change with r. In fact,

suppose ~a2~ = Pa 1! - 1. The function h(A ,r,a) is not hyper-

bolic globally in r in this case. The equation

- f(P,a,r) d~f Ia 2 Ie
’
~~
2 

- Ia 1 Ie 
r1 

+ 1 0

has the solution P = 0. Since

Pf(0 ,a , r) — +__________ — - a2 r2 a1 r1

and f(P,a,r) -
~~ 1 as P -

~~ ~~~~, there will be a positive zero

of f if 1a 2 1r 2 > 1a 1 1r1 . Since f(P,a,rl + +~~~ as

P -
~ 

-
~~ ther e w i l l  be a negat iv e zero ~f f if Ia 2Ir 2 <

Ia .11r 1.

There fore , if )a2 jr 2 / 1a 11r1, that is ,

r1 / (1a 21/ (l+Ja 2P)) r2~ r1,r 2 ra tionally independent, the

set Y(a, r) will consist of two intervals. When

r
1 

= (1a 21/(l+-1a 21))r2 the set Z(a,r) will consist of one

interval. -

Example 6. 4. Consider the equation

-Ac 1 2(6.3) h(A ,c) = 1 - 2cc + c e = 0.

_ _ _ _ _ _ _  ~~~~~~~~~—~~-- --~ • - . -  - -:-~~~~~~~
- .

~~~-~—---
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Let us study Z(C) as C 0 and always assume that

£
2 

> C
]~ 

> 0•

As a first case, if £
2 

= 2c
1 then h(A ,c) 0 if and

only if 1 - Ce 1 
= 0, Re A = ~~ 1nJc~ . Thus , if ~cI ‘ 1,

Re A ~ +00 as Cl 
4~ 0; if Ic ! = 1, Re A 0 for all t

~~
if ~c) < 1, then Re A ~~

. -00 as C
l ~~~~~°

If £
2 

> C
l > 0, we know that 1(c) C [p 2(c),p0(c)J where

p
2 

p
2(c), 

p
0 

p
0(c), satisfy the equations

(6.4) (a) 1 = 2IcIe 1 0 
+ c e 2 0

2 -c2p2 -ti
p
2(b) c e = 1 + 2~c~e

Now suppose

(6.5) - I-cl < 
i~~

2 
i c i .

If relation (6. ) is satisfied , then 2 1 c 1 + c2 > 1 and

p
0 

= p
0(c) > 0 , p

0(c) 
-~~ +c° as C 0. Furthermore , if

p
2 > 0, then

•
~~C ~~~~~ 2 ~

1 + 2Jc~e ~ = c2e 2 
< c e

1 < (C -2IcP )e ~ 
.c c - 2 1c 1

2 
-

1-c -

2 
< • 

- 
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Thus, if Relation (6.5) is satisfied , then £
2 

= c 2 ( c)  < 0,

as ~~~~~~~~~~~

Also, if > > 0 are rationally independent , then

(p
2(t),

p
0
(C)] is the smallest interval containing Z(t).

Thus, if Rela tion (6.5) holds , the smallest closed interval

containing ~~(E) approaches (~ co ,+00) as C ... 0.

To determine when 1(c) is a single interval , we shou3d

find p
1
(c). The number p

1(
c), if it exists , mus t be a

zero of the function

2 -Pc2 
-Pcif(p,e) c e - 2 Ic Ie  + 1

this function has a unique minimum at a point given by

1 ~c)c2lnt
2
_ 
1 ‘ 1

If id < 1, then we can choose £
2 > such that

~c (c2/2 c 1 = 1 and thus a 0. Since f(0,C) = (Id -i)2 ‘ 0

if Ic ! < 1, it follows that f(p ,c) > 0 for all p and p
1

does not exist. This means that ~(a,E) [p
2(c),

p
0(c)).

We can thus choose C1, C2 0, c
~ 

< C
2~ 

so that

Ict c 2/2t1 
= 1 and i~(a,c) (~~~ 00

,0 0) .  
4

If
2

(6.6) Ic ! < 1 c

then p
0(c) < 0 and p

0(c) -‘ -~~~~ as C 0. If

4
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( 6 . 7 )  Id = 
1-c 2

then p
0(c) = 0 f or al l  C~ > > 0, p2(c) < 0, p2(c) -~~

as c -
~~ 0 and the smallest closed interval [P2(C) ,0]

containing Z(C) approaches (-00,0] as C + 0.

-Ar 1Example 6 .5 .  I.ct r 1 
< r., < r 

~~~ 
h(?~,r) = 1 + c +

-Ar -Ar
e 2 

+ c ~~ . I (r1,r2,r3) are rat iona lly independen t,

then the smallest closed interval containing Z(r) is

[P 3, P0] where

-P r - P.r -P r..,
e 3 3 = l ~~~e 

a l + c  3~~

— P 0r 1 - P 0 r2 -P 0r 3l = e  +~~~~~~

The numbers p1,p 2 are defined by

-P 1 r -p 1r 1 -P 1r
e 1 1 = l + e A

e~~2
T2 = 1 + e~~ 2

T1 
+

if they exist. This implies necessarily tha t p
1 < 0, p2 < 0.

On the other hand , for p < 0, the functions

-Pr -pr
1 

-pr
f(~) = e + 1 - C + e 2

-Pr -Pr -Pr
g(P) e + 1 + e 1 

- 
~~ 

2 .
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are decreasing and pos itive for p = 0. Thus , p1,p 2 do not

exist and Z(r) [p 3,~ 0
] if cr- 1, r1, r3) are rationally

i ndependen t .

Suppose (r1, r2,r3) arc no longer rationally independent;

in p a r t i c u la r , r1 = 1 , r2 
= 2, r 3 = 1T Then [p 3,p0]

[- .56,.60). What is the sma llest interval 
- 

(P 3, P 0 ]

c o n t a i n i n g  ~ ( r 0 ) ,  r0

From Theorem 3.1, we need only determine 0 = (01, 02) and P

such tha t

H(p,0) = 1 + e~~e
1O

1 
+ e 2%

210
1 

+ c 2e~~
2 

= o

that is ,

- 
i01 jO iO

e ~e ~(l + e ’
~e 

1) = -1 - c
71

~e ~

Geometrically, this says these two curves in the complex

plane must intersect

I

I

~~~~~- 
I ___

~~~~~~~~~~~~~~~~~~~~~~~~~

j

~~~~~~~~

: ~ETT
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Im A
I

- 

~~ 

j 0
1 

- 

~~ ~
0
1e e (1+e e ) H

These curves  i n t e r s e c t  if and only if P C 1P 3, aJ where

p
3 is as above and 0 s a t i s f i e s

- 0  y . )
= — ~- (l-e ).

Thus, !(r0) 
= [p 3, aJ [- .56 ,.30J and (p 3, oJ ~ (p 3, p

0 J .  —

There is a definite shrinking of the interval when the delays

are not allowed to vary independently.

[ 

_ _ _ _ _
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